An Introduction to BASH Command-Line for
the beginner

Koushik “Razor-X” Roy

Disclaimer:

This book is licensced under the Attribution-ShareAlike 2.5 Creative
Commons license. Therefore you have the right to: copy the work, dis-
play the work, perform the work, make derivative works, and use this book
commercially. In addition, you must attribute the work in the manner spece-
fied by the author and if you alter, transform, or build upon this work, you
may distribute the resulting work only under a license identical to this one.

The legal code of the license can be found at
http://creativecommons.org/licenses/by-sa/2.5 /legalcode

http://creativecommons.org/licenses/by-sa/2.5/legalcode

Contents

(1__Introduction|
(1.1 History of the Shell|
(.2 Format of Commands in this bookl

1.3 Piping|

(1.4 Linux Directory System Primer|

[4 Package Managers|

1 Introduction

Where we see beauty, most see darkness

1.1 History of the Shell

To start of the Command Line guide, I'm going to start off with a short
history of the Shell itself, as it evolved in tandem with Linux. As we all
(should) know, Linux is just a kernel, nothing more. Everything that modern
Linux distributions use today are add-on software. The only thing that can
really be considered “Linux” is the kernel. But what does this have to do
with the shell? Well, as is apparent, there are many alternate solutions for
one problem in the Linux world, thanks to the fact that the only standardized
Linux thing is the kernel. But, there are a few things that most people take
for granted as having no alternatives in this day, such as the shell: BASH.
What most people don’t know is that, just like other utilities for Linux,
there are alternate shells for Linux. It just so happens that BASH is the
most popular. Come with me, and I'll take you on a tour of the evolution of
shells from their roots in UNIX, and what led up to BASH.

The first UNIX shell ever was SH, the Bourne SHell. As it was the de
facto UNIX standard, many many scripts were written for it by numerous
people around the world. Finally, the first deviant shell arose from the basic
SH shell. It was called CSH, a shell with a syntax similar to C. But, because
of its total incompatibility with the majority of shell scripts existing at the
time, CSH never grew popular. People kept on using SH.

Then came the next deviant shell, KSH, or Korn SHell. Named after
its creator, David Korn, KSH was fully compatible with existing SH scripts,
and had some features that CSH came with. KSH was also much faster
than CSH, which drove the little popularity CSH had down. KSH remained
popular for quite a while.

Finally, ZSH came on to the scene. ZSH was a shell that combined the
best of SH, CSH, and KSH into one shell. ZSH also accorded quite a bit of
popularity. ZSH is even included in today’s Cygwin distributions.

Still, around this time, a remake of SH was coming up, called BASH
or the Bourne Again SHell. This shell quickly exceeded ZSH in popularity,
and became one of the de facto shells. When UNIX forked, Linux embraced
BASH, and BSD embraced CSH. The current default shell in FreeBSD and
OpenBSD is TCSH, a superior version of CSH.

1.2 Format of Commands in this book

Throughout the book, you will be shown Linux commands. This section
is designed to make you familiar with the format of the commands that we
write about.

program -t -e -s <parinput> -T input

Take a look at that. Now, we’ll take it apart in small bits. To start a
certain program in your path (I'll get into that in a second) you must type
program, and make sure that it matches the case of the program you want to
call. All Linux input is case-sensitive. Make sure to type it in correctly. The
last word of the command is input. This is the file that you are passing to
program as input, so it can process it according to the function of program.

Now, look at the second part. It’s a group of letters with attached hyphens
separated by spaces: -t -e -s -T. These are called the program parame-
ters, and are passed to the program when the program starts running. Each
one of these parameters such as -t have a special meaning. Make sure to
observe that the parameter -s is followed by <parinput>. This notation is
exclusive to the book, as it denotes input that a specific parameter requires,
in this case, the parameter —-s requires any file to be passed with the parame-
ter. It would look like program -s parinput input, where parinput is the
input for the parameter -s and input is the input for the program program.
Also, note that -T is capitalized, just like all other input, parameters are case
sensitive.

Rather than writing about every parameter, this book will focus on the
most used ones. If you need to learn about other parameters, read the man

page.

1.3 Piping

BASH is a very powerful shell with a multitude of scripting and other
input directing options. While it is out of the scope of the document to
introduce scripting, this document will introduce the concept of piping, as it
is the best way to use many commands.

First, I will go into a simple primer on Linux program output. Almost
all programs do something and write their results to the console. Each of
these Linux programs is writing their output to the console. When a program

writes its input to the console, it is also considered as writing to stdout or
“Standard Output”.

Piping allows you to redirect output to places other than stdout. Many
examples of piping exist. When asking a command for a list of processes, by
default, the command sends its output to stdout. But, the list of processes
may be large, and you would like another program to sort through the list
and find one specific line you are looking for. In this case, you must pipe
the output of the first program to the second program. The second program
then writes its input to stdout. Piping can be performed indefinitely. For
an example of piping, you can do 1s -a | more. In this case, | is the piping
character, it tells BASH to pipe the output of 1s -a to the program more.
more will be covered in more detail in the Basic Commands section.

1.4 Linux Directory System Primer

‘Note: If you already understand the material, feel free to skip this section.

The Linux Directory System is based on the original UNIX Directory
System. As a consequence, almost all UNIX forks have similar Directory
Systems. In Linux, the base directory (the drive itself) is /. This is equivalent
to C:\ in Windows and DOS, where C is the drive on which the Operating
System is installed in. All subfolders of / are appended on to the name. To
access the subfolder home on /, the directory would be /home/ The trailing
slash at the end of the line does not need to be included. The Windows
or DOS equivalent of this directory would be C:\home. In Linux, there are
generally some default directories: /bin,/boot, /dev, /etc, /home, /1ib,
/mnt, /proc, /root/, /sbin/, /sys/, /tmp, /usr, and /var. Many of these
directories hold certain types of files. It is out of the scope of this document
to explain the significance of each of these folders. Suffice to say, these folders
are important in most modern Linux distributions. Also in Linux, there are
hidden files and folders. These files or folders are preceded by a . to signify
that they are hidden. For example, /home/.asoundrc is a hidden file called
.asoundrc in the /home directory.

2 Basic Commands

2.1 Introduction

The Linux command line is managed using multiple programs that per-
form certain functions. This chapter will explain the basic commands, their
uses, and how they can be used together for optimizing tasks. The BASH
shell also contains a very sophisticated method of scripting, but BASH script-
ing is out of the scope of the document. By the end of the chapter, you should
be able to perform many common tasks using BASH.

Note: All lesser-used program parameters will be ignored

2.2 man

man programname

Manual, or man is the most useful Linux program by far. The function of
the man program is simple. By typing in man preceding the programname you
view the program’s manual. Most commands have manual pages, and most
manual pages have important information about the command in question.
A man page contains the program syntax and possible parameters, plus the
explanation of the parameters. Man itself has quite a few parameters, but
they are very rarely used. Why not find them out yourself and try out your
first command by typing man man?

2.3 c¢p

cp -R -v input destination

Copy, or cp is one of the most basic commands. This command is one
of the fundamental commands in most Command Line interfaces. Simply,
cp copies a file from input and places it in destination. In many Linux
texts, you will see the word foo as a moniker for input and the word bar as
the moniker for destination or output. As these are nondescriptive names,
this book does not use the words foo or bar. Also,

In cp, the most common parameters are -R and -v. When copying di-
rectories, in many cases, you want to copy the contents of the directories as
well. The -R parameter enables you to do this. In many Linux programs -R

7

performs the same function, as it means “recursive”. The next parameter
-v also is very common in other Linux programs. This command stands for
“verbose”, or verbose destination.

2.4 mv

mv -R -v -i input destination

Move, or mv is another basic command. This command is used almost as
often as the cp command. The Move command moves a file from input to
destination.

Common parameters of mv include -R, -v, and -i. As above, -R stands
for “recursive”, and -v stands for “verbose”. The parameter -i stands for
“Interactive Mode”. In “Interactive Mode” mv will prompt you for every
moved file.

2.5 rm

rm -R -1 -v input

Remove, or rm is the last basic command. This command is used often,
but not as often as cp or mv. The Remove command does exactly what its
name implies, it removes a file or a directory. from the drive. If any file or
folder is deleted using rm then it is unrecoverable, unless special software is
used.

The parameters of rm are pretty straightforward. From above sections,
-R, -1, and -v should be known as “Recursive”, “Interactive Mode”, and
“Verbose” respectively. Only -R can be used to delete directories. When
using -R all files and folders in a folder specified will be deleted.

2.6 s

ls -a -aa --author -C -d —x

List, or 1s is a very basic command with a very length set of parameters.
The function 1s has is very simple. 1s lists the contents of a directory on
to the console. The parameters are used to manipulate the format of the
output of 1s.

The first parameter -a stands for “all”. When using 1s and calling -a,
everything in the directory will be shown including hidden files, . and ..
(. is the current directory and .. is the directory directly above it.). The
second parameter —aa is “almost all”. This parameter shows everything that
-a does without the . and .. included.

2.7 grep

2.8 In

2.9 chown
2.10 chmod
2.11 sudo
2.12 alias
2.13 cat

3 Text Editors

I would like to think of myself above the man who would forsake ketchup
over mustard if only to avoid the possibility of choice

3.1 Introduction

The world of Linux is filled with choice. So much so, that there is almost
always a program that suits everyone’s taste. The trouble with Linux is that,
this gargantuan amount of choice often complicates the user environment,
because these choices are not thoroughly explored. I firmly believe that the
true power of a Linux system is the power to configure every portion of
the system to tastes tailored to your own person. Therefore, knowing the
array of choices, and understanding what each choice means is essential to
customizing a system.

Another thing in Linux is ease-of-use. Some users prefer ease-of-use over
anything else. While I strongly suggest sampling every choice and picking
through your preference, if you absolutely must pick the easiest text editor
to use, then you should choose nano.

If this is your first introduction into the command-line world, you may
want to know the point of using text editors. The UNIX world thrives on
text files. Unlike the behavior of Windows which stores settings in a central
repository called the registry. This registry stores settings using different
variables, many of which are hexadecimal. The convoluted system of the
Windows registry is a very effective detractor away from configuring it in
Windows. On the other hand, in UNIX, everything is stored in accessible
plain-text, with features such as comments that severely increase the read-
ability of the settings you are reading. But, in order to edit these text files,
it’s almost a given that you must have a nice text editor. The chore is finding
a text editor that you are comfortable with. The hope is that by the end of
this chapter, you will have found a comfortable text editor, or at the very
least, be on the lookout for new text editors on the internet, as the pool
of text editors is almost limitless. Note also that the list in this guide is
restricted to free text editors.

‘Note: All program choices are presented alphabetically with no partiality.

3.2 emacs
3.2.1 Overview

Emacs is a powerful command-line text editor. Emacs is one of the text-
editor powerhouses, and a legacy editor. Emacs is an editor that defines the
extent of the power of text-editing, if a feature can exist, it has most likely
been added. The way features are added to emacs, is through a programming
language called emacs-lisp. This programming language allows users to add
numerous features to emacs.

The power of emacs lies not just in its text editing capabilities, but also
its multipurpose nature. A special feature of emacs, is that, emacs can do
much more than a text editor should. Emacs can be used to run terminals,
it can be used to chat on IRC, and surf the internet. Emacs (for better or
for worse) has been called it’s own distro. Still, this power comes with its
own crippling duality. The size of emacs is enormous, much more than leaner
editors such as vim. Still, if you prefer to edit a file with a text editor that
can support any possible feature that you could want, then emacs is the right
editor for you.

10

3.2.2 Movement Controls

The emacs movement controls are heavily based around the concept of
the Control and Meta characters. The Control key is your comon Control
key found on most keyboards. (Note: In the original UNIX keyboards, the
Control key was located where the current Caps Lock key is located on the
US-101 keyboards. This is one of the reasons that emacs is based around
the Control character, as it was in a convenient location. Microsoft’s classic
disregard for standards pushed the Control key to occupy a grim fate in a
relatively untouched corner of the keyboard.) On most current Linux dis-
tributions, the Meta key is the Left-Alt key. In Linux, this behavior maybe
changed using the setxkbmap command (this can also be used to switch
the Caps Lock and Control keys to retain the layout of the original UNIX
keyboards). In this guide, I will give a very rudimentary rundown of the
movement controls in emacs. Emacs is explained in much more exhaustive
detail in the tutorial included with emacs, if you want to try and experience
emacs, I strongly urge you to use this tutorial.

The notation for emacs controls goes thusly: C-a represents the key com-
bination of Control and ’a’ with Control being depressed before ’a’. M-a
represents the same key combination as C-a except that the Meta key is
being depressed instead of the Control key.

Key Binding Description

C-f Forward One Character
C-b Backward One Character
C-p Previous One Line
M-f Forward One Word
M-b Backward One Word
M-p Backward One Sentence
M-f Forward One Sentence
C-v Forward One Page
M-v Backward One Page

Something to note in the limited emacs bindings I have presented here,
is that, for each of the commands that the C- key performs, the Meta key
equivalent performs something that has to do with something tangible. In
this example, C-f scrolls forward one character, which is a computer term,
whereas, M-f scrolls one word forward, which is more tangible than a com-
puter term.

11

Of course, just as in any other legacy text editors, emacs supports scrolling
using the arrow keys, but, it is suggested that arrow keys are not used for
scrolling in emacs because certain terminals (more on that later) do not
support arrow keys.

3.2.3 Muscle Memory

If a text editor is used enough, eventually the most used commands (and,
if you use text-editor’s movement commands (as you're supposed to be doing)
they will be the first to be embedded) will embed themselves into your muscle
memory. If you use a text editor for almost all operations (such as I) then
these muscle bindings will dictate everything you do. Therefore, I spend a
subsection in each chapter explaining the muscle-binding effects of the text
editor on your hands, so that if you find any one of these muscle momery’s
undesireable or harmful in some way, you will stay away from the program.
(Remember, ergonomics is a major part of the usage of a text editor, I myself
use the text editor I use for something specific to ergonomics. If, for some
reason, the binds of a text editor are not to your liking, or painful to reach,
it is strongly advised not to use the editor, because RSI may develop later.)

Emacs muscle memory is dependant on the control keys. If you are set
on using emacs, but the distance of the control keys offstancesz you, you can
do what many others have done - switch the left Control key and the Caps
Lock key. This will make the Control key much closer to your fingers, and
make emacs editing a breeze. If you're willing to go the extra mile to use
normal Control keys (as many people do nowadays) then be sure it is not too
taxing on your wrist. And, while some control based commands are centered
around common QWERTY positions, not everything is, so emacs is a nice,
powerful editor for those using non-standard keyboard layots like Dvorak.

3.3 joe
3.4 mcedit

4 Package Managers

12

	Introduction
	History of the Shell
	Format of Commands in this book
	Piping
	Linux Directory System Primer

	Basic Commands
	Introduction
	man
	cp
	mv
	rm
	ls
	grep
	ln
	chown
	chmod
	sudo
	alias
	cat

	Text Editors
	Introduction
	emacs
	Overview
	Movement Controls
	Muscle Memory

	joe
	mcedit

	Package Managers

